The appearance of a jump (a shock wave) in the vacuum is characteristic for loading processes in mate-
rials undergoing phase transitions [3]. In the case of graphite this sudden change indicates simultaneous graphi-
tization of diamond into which the graphite is converted during the loading process.
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STABILITY OF A THIN ELECTRIC ARC

A, A. Bobnev UDC 533.951.8:621.301.431

1. Introduction. Assuming a thermal plasma and neglecting the emission and density variation due to
electromagnetic forces, we write the dimensionless equationsfor a steady electric arc burning in a cylindri-
cal channel as follows [1]:

r 1M TYT'Y + E*e(T) = 0, (1.1)
r=YrHY = o(T), pT =1, ¢, = ¢,(T), u = p(7),
E = const, H, = EH.

One can select

Tlr=-‘o = 1’ T/lr=o = Hir=o = 01 Tlr“—‘l = TR {1-2)

as the boundary conditions. The constant E is determined from the three boundary conditions for the first
equation of the system (1.1). Here T, p, 7, E, Hyp,A, cp, and p are the dimensionless temperature, density,
electrical conductivity, electric field intensity applied along the z axis, ¢-th component of the intrinsic mag-
netic field intensity, thermal conductivity coefficient, specific heat at constant pressure, and the dynamic vis~
cosity coefficient; TR is the dimensionless temperature on the channel wall; and r, ¢, z are cylindrical co~
ordinates; here and below a prime denotes a derivative with respect to r.

The values of the corresponding parameters on the channel axis (with subscript m) are the scale factors
of T,p,0, A, Cp, and p. The scale factors of the electric field intensity and the magnetic field intensity are

Ep=VinTnom/Ryy Hom = EnomBn.

The stability of an electric arc has been investigated in [1] with respect to symmetrical perturbations
with viscosity taken into account. Tt turned out that for the critical curves {we will mark the critical param-
eters below with a subscript ¢) which separate the stable regions from the unstable ones the phase velocity of
the perturbations is equal to zero, and the stability boundary is determined by the value of the product of the
Stewart number by the viscosity parameter. The equations along with the boundary conditions are of the form

p' = —EQ[H(ce + (do/dT)0/A) + okl + 2r-Y(rp')’ —
—un(2/r% - B 4 g’ — @B){ulr-1v) + wl'Y,
r-Yruw') = —k*p — E*¥*QHh + Er-Y(rpv)’ +
+ (&3 pw — (213YPwr-roy, (1.3)
r-rpv)’ = —puw,
r=4r0')" = ¢, T'pv + k*0 — E*20¢ + (da/dT)B/A),
r=Yrk) = ce + (do/dT)0/A, & = k*h/o;

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 108-118,
March-April, 1979. Original article submitted March 10, 1978.
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v=w =0§"=h=0 at T=0,’,

p=w=0=h=0 at r=1 1.4

- in this case. Here /A, v, w/ik, Pp, Eh, Ee are the amplitudes of the perturbations, respectively, of the tem-
perature, radial velocity component, axial velocity component, pressure, ¢-th component of the magnetic field
intensity, and the z-component of the electric field intensity; k is the wave number, Q@ =SP is a parameter which
characterizes the stability boundary; S = 11,6,,0,,TpcimBo/ Ay is the Stewart number; P=pmVmBRm/um =Am/
pmCpm I8 the viscosity parameter; and pe=4nr" 10" kg m/kl is the magnetic permeability. The scale factors
of the time, velocity, and pressure are

b= pmcmeEn/hmy; Vm = Ryn/tmv_ Pm = PmV"zn’

respectively. The boundary conditions (1.4) are imposed from considerations of the boundedness of the func-
tions at r =0 and of the fact that the channel boundary is an impermeable non-current-conducting surface at
‘constant temperature, One should note that it is possible to lower the order of the system (1.3). For example,
it is possible to determine v' from the third equation of the system (1.3) and to substitute it into the first equa-
tion. This fact should be kept in mind in what follows,

The problem (1.1)-(1.4) will be investigated in this paper in the case in which the channel is divided into
electrically conducting and nonconducting zones and thée radius of the electrically conducting zone {the arc
radius is rg) is small (v <1):

or _{G(T) for T> T, (1.5)
)= 0 for T<Tqg

(T, is the value of the temperature below which the electrical conductivity is equal to zero). It is evident that
the solution for the perturbed magnetic field outside the electric arc is

h=0 for 7 >r, (1.6)

Specifying the electrical conductivity in the form of a continuous function of the temperature (and so, of the
radius), we obtain that the perturbed magnetic field intensity is equal to zero,

hfpae oo 0, (1.7)
on the unperturbed surface of the electrically conducting zone (r =r ).

With the use of Eqgs. (1.6) and (1.5) we write the equations for the electrically conducting zone in the

form
’ ! = 2r-Yruv') — w(2/r® + K% 4 pw’ —
—@B3){plr-Yrv) + wl},
r—{ruw') = —k¥p + kr-{rp) -+ (1.8)
+ (43P pw — (2/3)EPpr-1(vY,
r=Yrpv') = —pw, 120"y = ¢, T'pv 4 K%.

The solutions for the perturbations obtained in the electrically conducting and nonconducting zones should be
spliced on the unperturbed surface of the electric arc (r =rg(). Selecting Q in an appropriate way, it is possible
to obtain a nontrivial solution of the problem (1.3}, (1.8), (1.4), and (1.7); i.e., in this case Q fulfills the role of
an eigenvalue.

2. Solution of the Problem for |Inry,|"! «TR. Usually, the temperature of the channel wall in electric
arcs is significantly less than the temperature on the axis; i.e., TR<«1. The condition

I rg -t << Ty 2.1

denotes the limiting case of as thin an arc as desired; it is assumed in the investigation of the burning stability
of such an arc that the remaining parameters are fixed. The solution of the problem (1.3), (1.8), (1.4), and
(1.7) under the condition (2.1) is of independent interest and also very significant from the methodological point

of view.
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For simplicity's sake the stability investigation will be conducted with
p=c, =h=1 2.2)

We then note that the unperturbed temperature for the electrically conducting zone is determined by the formula

T =rgo 0" [rmrgy Inr 4 Ty (2.3)

We introduce the notation
e =1 -7, e = ¢E, (2.4)

and also the new functions
T (T — T He 2.5)

In the limiting process €, —0 (rs0—90), ¢ is fixed, and the inner coordinate {he terminology is taken from {2})
has the form

(2.6)

Then the equations for the unperturbed parameter of the electric arc (1.1) with the boundary conditions (1.2)
are rewritten in the form

"

-
L=

1.

FUAANLAT Y + ofF) =0, tN@dL)(EH) = o(T); (2.7)
dfldtly o = Hlzg=0, Tlog =1 @.8)
and the electrical conductivity is written in the form
{6(T) for T>o, 2.9)
Tl o fr Fco.

A boundary condition equivalent to T}, —;=TR is omitted in (2.8}, since the solution written in the

variable { is interesting only for r«1. The value of ¢ at which T becomes equal to zero is denoted as ¥; i.e.,

Poo 81 = Y. (2.10)
It is evident from the form of the problem (2.7) and (2.8) that v, and also vdT1dL|ey , do notdepend on rgy.
One can obtain from Eq. (2.3) with the help of Egs. (2.4)-(2.6) and (2.10) a relation between €2 and the arc radius
g2 = (1—TR)/(ydT/dLlmsln 1oy + 1), 2.11)
whence it is clear that &2~ [In rgy |1 as rgg—0.

Let us rewrite the system of equations (1.3), using the new variable ¢ and Eqgs. (2.2), (2.4}, and (2.5):

dpldf = —e,E*Qlefl(ce + (do/dT)0ie?) + oh] +
+ e Y4/3)(d/dT) [ LNAIdE)(Lv)] — ekPv + (1/3)dwidE,
g (d/dY) (Cdw/dD) = ef (4/3) k2w + e, (1/3) k2L (d/dE) (Lv) —
— ek?p — 2 E*Qk*Hh,
AL — (1 — D)} = —ew/ll — (1 — D)1, (2.12)
L (d/dl) (£d0/dy) = e?e, (dT/dt) v/[1 —
— e2(1 — T)] + €}%?0 — &2 (20e + (do/dT) 6/¢?),
LNdldg)(ch) = ei(oe -+ (do/dT)B/e?),
de/d;, = eik*hlo.

The ideas of perturbation methods {e.g., see [2]) are used in connection with the solution of the problem
(1.3), (1.8}, (1.4), and (1.7) as r;;—0. I is possible to construct an asymptotic expansion of the eigenfunctions
and eigenvalues which is valid at the boundary r =0 (interior expansion) as follows:

p = (27508 &1 In &1 [Py (8) + Vo1 (1) D1 (§) + Voo (8 s (©) +- - ]

(2.13)
! El (C) + V2, (81) l?l:"2 ((:) + .. -l,'

w = (2TaQu/BY) W Ine, [y ©) + 1o

Ine,
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v = (2T rQy/B?) k%, In%e, [T:}, @+ 11—’5 (©) + vor (€2) v (D) +-- - ]
0 =e2[8,(0) +vor () B (0) +- . ], =B () + (2.13)
+vat () R Q)+ ] e =€ (8) Fvae) e (D) +- -,
Q = (2T /%) e1 “e~21n g, [Qy + Vo1 (&) Q1 +- - .1,

where vpn+1/vpn=0,Vwn+1/Vwn—0,...as €, =0, and
B = —ydT/dL—,. (2.14)

Substituting the asymptotic expansions (2.13) into the system of equations (2.12), we obtain

dpyldl = —IH(oe, -+ (do/dT)B,) — ohy,
LN d/dE)(Ldwi/dt) = —Po — Hoho,
C-UdIAL)(LdBy/dT) = —20ey — (do!dT)B,,
L-1(d/dt)(Ehy) = de o + (do/dT)B,,
degld = 0, L-d)dL)(Ldwy/dl)=0, L-Yd/dL)(Tvy) = —wp,
ENd/dOL) = —w; — (4 — TR)/pY (dT7d0)w,.

(2.15)

Outside the conductivity region (¢ >+y) the solutions of the system of equations (2.15) will be determined by the
formulas

Do = C1, dw/dt = C,4/2 + L,
wi = C1{4 + CyIn ¢ + Cy, dBJdE = C4E,
Bo=CsInZ + Cy, Wy = C;, Ty = —C,1/2, (2.16)
v = —Ci1316 — Co((£/2) In § — £/4) —
—C38/2 4 €yt — C.(1 — T4,

where Cy, Cy, ..., Cy are constants determined from the splicing conditions of the solutions at ¢ =v; e.g.,

C1 = Faly), Ca = vdinldLlemy — DolON2,
Cs = wi(y) — poly)y% — CyIny, . . ..

For r >rgy Egs. (1.8) can be written in the form
P = [4/3)eP¥r(Ty, — P ln r)w — w’ —
— & — (8/3)e*p2r¥(Tp, — ep? In1)lv,
r-Yrw'Y = kw — Ep — Kk¥3)e*B2/r(Tr — e2p® In 7)], (2.17)
1Y) = —w — [EPYr(Ty — P2 inrn)ly,
0"y = K0 — [T, —ePilnnl

with the use of Egs. (2.2), (2.3), (2.5), and (2.14).

One can construct an asymptotic expansion of the eigenfunctions, whichis valid at the boundary r=1
(exterior expansion) as follows:
p = QT RkIB*) In eilpe(r) + ppi(ed)ps(r) -+
+ Bpalepa(r) + .- o L
w = (2T kIB?) 1n &1 [wy(r) + pyy (edwilr) + ... 1, (2.18)
v = (2T, KIPY) In eqlve(r) + upiled)ou(®) + .. . 1
0 = ¢ In £,[0y(r) + peile)n(r) + ... 1,

where ppn +1/4pn =0, Hw.n +1/Bwn—0, .. . as €;—~0.

Substituting Eqs. (2.18) into the system (2,17), we obtain fhe following system of equations in the zeroth
approximation:
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PZ) = — wy —k*,, r (rw(l))/ = KPw, — E*p,, (2.19)
r=1(rv,) = —wg, r~ (1) = — (2k/r) v, + k28,

The solution of the system (2.19) is {for example, see [3])
vo = Byli{kr) + BoKy(kr) - Bokrlo(kr) -+ B Jr Ko(kr),
wy = —Bykly(kr) + BykKo(kr) — Byk[21,(kr) +
+ krly(kr)] — B RI2Ko(kr) — krK (kr)],
wy = — Bkl (kr) — B,k*K, (kr) — Bgk?[21 (kr) +
+ Ekrl, (kr)] -+ Bk [2K, (kr) — krK, (kr)), (2.20)
Do = 2BghIy(kr) + 2B JeK,(kr),
0 = —Bily(ker) In kr 4 ByKo(kr) In kr — Bgkrly(kr) -
+ BgkrKy(kr) -+ Bylo(kr) 4 B K (kr),
8, = — By [k, (kryInkr 4+ I, (kr)/r] + By [ — kK, (kr) In kr 4+ K, (kry/r] —
— B*rIy (kr) — BJe*rK, (kr) + Bkl (kr) — BgkK, (kr),

where I and I; are the modified Bessel functions, K; and K, are the Macdonald functions, and By, By, ..., Bg
are arbitrary constants, Without dwelling on the construction of the solution (2.20), we note that it is possible
to confirm its correctness with a check.

Let us consider for the splicing of the interior and exterior expansions the intermediate limit

g — 0, ry = rfy is fixed, (2.21}

where
g MKl o /ey — oo, -+ 0.

In the limit (2.21) r =nry—0, § = (y/eyry — o0. In connection with the splicing of the first terms of the interior
and exterior expansions, using the definition (2.21), Egs. (2.10), 2,11}, (2.14), (2.16), and (2.20), as well as the
expressions for the functions Iy, Ij, K;, K, in series form, we have (the functions p, w', w, v, ', 6 are spliced
serially)
Cy =0, Q)Cy, = 2B,, 0 = B,, 0 = B; + By,
—Cs =By + B;+B; (In2 — (), —C, + C; =0,
CsQp = —B1 — 2B; + B,[21In (k /2) + 2C + 1],

2.22)

where C=0.577 ... is Euler's constant. Here B,=0 is used in writing Egs. (2.22). We obtain with the help of
Egs. (2.16)

Py (¥) =0, Qokydiwy/dl[;_y = lim (ru),
0 =vglmo, 0= 00fms, —7dB/dL};y =6, ], (2.23)
(120 — ydwy/dL) ey = 0, Qp (wy — y1n Ydl;ﬂdg) ig:v = lim (wy/lnr).
i r=0

The zeroth and succeeding terms of the asymptotic expansions (2.13) and (2.18) (the interior and exterior
expansions), should, as follows from (1.4) and (1.7), satisfy the boundary conditions
v, =dw,ld{ = db,/dt = h, =0 at [ =0, %, =0 at ¢ = Ve (2.24)
=w,=0,=02a r=1{x=01,2,...).

One should note that the first five equations of the system (2.15) are enough to determine the eigenvalue Q[this
follows from the conditions (2.23)]. One can express By, B;, Bg, and B, from Egs. (2.20), (2.22), and {2.24) in
terms of

By = 0By, By = 0By, B = bsB,, (2.25)

h
ere by = LR (M () + To(R)E(e) 1M olle) —

=Ly [214(k) + EL(R)1};

209



by = {11(k)[2K (k) — BE1(E)) — kR o(R)o(R) )/ {kIo(k) — 1y(k) x
X [20I4(k) + BL(E)Y; by = {byllo(k) In k -+ Ko(k)] +
byl () — kR ()} o(R).

When
Ttor T>0,

- (2.26)
0 for T<O0

o(T) =

it is possible to solve the problems (2.7), (2.8), (2.15), and (2.24) analytically. The solutions for the unperturbed
parameters in the electrically conducting zone are of the form

T =uyt) =02 2.27)
for ¢ <7vy; v =2.405 is the value of the first positive root of the equation J4(y) =0, and J; and J, are Bessel func-
tions. Using Egs. (2.27) and (2.26), the solutions for the perturbations of the problem (2.15) and (2.24) can be
written in the form

ey = A3, 8 = A 1Jo(8) — (D], Fo = A1TTy(D),
Po =4 [J§(2) — 8/ (B 7. (0], (2.28)
di/dl = — AL LIS @) + T QL

here only the solutions necessary for the determination of Q, are written. Substituting (2.28) into (2.22) and
using (2.26), we obtain :

— A7) Qo = 2By,
AyJi(y) = B {1 + b; — bi(In 2 — O)). (2.29)

Equating the determinant of the system of equations (2.29) with respect to the unknowns A, and B, to zero, one
can find Q,.

_ The function Q,(k) is illustrated in Fig. 1; the stability region is denoted by the letter "s" and the instab-
ility region by the letter "i", It is evident that |Q,| reaches a minimum as k — =; i.e., perturbations with
large wave numbers are the most unsfable.

The eigenfunctions of zeroth approximation in the electrically conducting region are plotted in Fig. 2,
and those outside of it with k=4 are plotted in Fig. 3. It follows from Figs. 2 and 3 as well as from the expan-
sions (2.13) and (2.18) that the amplitude of the pressure perturbations increases most intensely with decreasing
arc radius; the maximum pressure, and also the maximum longitudinal velocity component (maxima of the per-
turbation amplitudes are understood here), are found on the channel axis. The maximum of the temperature
perturbation is found near the electrically conducting zone but outside of it. The maximum perturbation of the
radial velocity is found outside the- electrically conducting zone.

3. Solution of the Problem for |lnr,|"'=O(TR). In the case in which the wall temperature is a quantity
of the Tirst order of smallness with |In rgo[ ! (or with €3, it is possible to introduce the notation

Tp = 2Py, @.1)

Then using the interior variable ¢ [see (2.6)] and also Egs. (2.3)— (2.5), we construct near the boundary r =0 an
asymptotic expansion of the eigenfunctions and eigenvalues
p = Qe [P0 (©) -+ vt (2) P (O) + vp2 (&) P2 () +- - -1s
w = k2Q In & [Be(8) + (In &)~ w1(L) + Vialer) Wo(D) + ...,
b = K021 In £115o(L) + (In &)~51(E) + voale)ve(D) + - - 1,
8 = e [B,(2) -+ ver(e)B1(D) F - - 1, = eilho(2) +
+ vpledhaf®) + - 1,
e =2, (1) + ver (&) ar (D) ..., Q=827 [Qp+ var () Qs +- ).

(3.2)

Substituting the asymptotic series (3.2) into Egs. (2.12) and keeping {8.1) in mind, we obtain the system of equa-
tions (2.15), withthe exception of the last equation, which has a somewhat different form and is not needed in the

following.

210



0 12 3 4
M 1
00:_372
S
-5 S N
s f ‘ :
3 i ! :
=10 - ;
4 f T
R
T
QG | | i
Fig. 1
"”"\ 5 T |
ha
\ /‘*&\ P
0,5 / | //
7
0 ~
P\a
I\
-0,5 ~
\
@, /2 1\
0 0,5 &/y
Fig. 2

Fig. 3

An asymptotic expansion of the eigenfunctions, whichis valid near the boundary r =1 {exterior expansion),
can be represented in the form

P = polr) + ppledpi(r) + ppale)pylr) + .. .,
w = wo(r) + Pyt W) + - B = 0(r) F ougy {ednlr) 4 .. (3.3)
8 = 8o(r) + oy (e)O(r) + .. .,
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where pp n +3/upn =0, fiw n +1/#wn — 0, ... a8€ 0. Then substituting the series (3.3) into the system (2.17),
we obtain the following system of equations in the zeroth approximation:
po = —wy+ (4/3) wo/r (tp — Inr) — [k2 —8/3r%(tg — In7)] Uy,
=1 {rvg) = — wy — ve/r (tg — InT),
=1 (rwy)’ = k*wy — k2py — k2wy/3r (tp — Inr) (3.4)
r~1(r;) = k%0, — Vo/r (i — Inr),
The behavior of the solutions of the system of equations (3.4) as r — 0 coincides with the behavior of the solu-

tions of the system (2.19); therefore, it is possible in connection with the splicing of the exterior and interior
expansions to obtain conditions similar to (2.23):

Po(¥) =0, E2Quydw,/dg|s . =1ir51(rw(,),

0= vg [r—o, 0 =0 |rmg, YAO,/dE gy = By |imo

(3.5)

(only the splicing conditions necessary for the determination of the eigenvalue Qg are written out here), It is
also evident that the zeroth and subsequent terms of the interior and exterior expansions (3.2) and (3.3) should
satisfy the boundary conditions (2.24). The systems of Equations (2.15) and (3.4) along with the con-
ditions (2.24) and (3.5) are solved numerically with a-(T) in the form (2.9), in which the quantity tg varied from
0 tow. The critical curves Qy,(tR) and k¢ (tR) are illustrated in Fig. 4. As tR — =, Q. (tR) tends asymptotically
to 6.4tR, and ke(tg) to 1. 46 log tg +3.32, which is in agreement with the calculation of the critical curve in
Sec. 2 (in which |In raol «TR). Astg-—~ o, one can construct an asymptotic expansion of the elgenfunctlons
and eigenvalues of the problem (2.15), (3.4), (2 24), and (3.5) in powers of the small parameter tR which re-
duces in the zeroth approximation to the problem (2.15), (2.19), (2.24), and (2.23); however, this will not be done
in view of the obvious simplicity of the construction.
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The eigenfunctions of the problem (2.15), (3.4}, (2.24), and (3.5) outside the electrically conducting region
are plotted in Fig. 5 with ¢ =¢ (T) in the form (2.26) as tr —0 and for k=4 (the eigenfunctions in the electrically
conducting zone will look the same as in Fig. 2). It is evident that the appearance of these curves R —0) is
very similar to the appearance of the eigenfunctions illustrated in Fig. 3 (tg — =), although it is not necessary,
of course, to forget about the coefficients which appear in front of the eigenfunctions in the asymptotic expan-
sions (2.13), (2.18) and (3.2), (3.3), as well as the fact that the vector of the eigenfunctions is determined to an
accuracy of a constant (not dependent on r) factor,

The critical curves Q. and k. for the problem (2.15), (3.4}, (2.24), and (3.5) were constructed numerlﬁ
cally with variation of the electrlcal conductivity distribution as tR —0, The electrical conductivity o = U(T)
was specified with the following single-parameter family of curves:

e*t —1

o (F) ={w =1 for 7 >0,

0 for T<0(—o00<a< o).

It is evident that the distribution o-(%) is fullest for large negative ¢, and on the contrary, it is least full as
a— =} the electrical conductivity distribution becomes a linear function of the temperature as o 0.

The calculated critical curves Qg (@) and ke (@) are_ shown in Fig. 6. It is evident that the filled distribu-
tion cr(T) (o ——) is more stable than the distribution <r(T) as ¢—w. Asa——», Qyu{a) 18, and as @ ~ «,
Qe ()0, However, the dependence of @y, on & is nonmonotonic, as follows from Fig. 6. Upon the varlatlon
of a from « to ~6 the quantity Q. increases from 0 to 18.8, and upon a further decrease of o from ~5 to —, Qe
decreases from 18.8 to 18.

One should note that the critical value of the wave number k. does not depend on . This is easy to show.
Actually, one can extract a closed system of sixth-order equations from the system (2.15) to describe the elec-
trically conducting region [these are the first five equations in the system (2.15)], whose order can be lowered
from seventh to sixth by the introduction of the new function

uy(8) = dw/di, (3.6)
with the five boundary conditions: three conditions of boundedness
U = dBydl =hy =0 at [ =0 8.7

and the two conditions
E?0271020 at [ =y

i.e., the functions T.ii and d(@lo/dg, which are necessary for splicing the exterior and interior asymptotic expan-
sions, are determined to an accuracy of a constant factor, e.g., A,.

There is also a system of sixth-order equations [this is the system [2.4)] for the description in the zeroth
approximation of the region where ¢ =0 with the five boundary conditions: three boundary conditions

Vg =1wy =8, =0 at r=1

and the two conditions vy= 90 =0 at r =0; {.e., the functions W(’)(I’) and 6y(r) necessary for the splicing are de-
termined to an accuracy of a constant factor, e.g., A,

Keeping (3.6} in mind, we obtain from the splicing conditions (3.5)
Ak2Quyu {v) = A, llm (rwo),

AydOy/dtle—y = 430l
whence for A;=0 and A, =0 we have
Qo = [(dBo/dg)c—y /1 ()] [ (Lim () )1 (70, (). (3.8)

It should be noted that ui('y) and dB8,/dlli—, are functions only ofa [this follows from the form of Egs. (2.15) and
the boundary conditions (3.7)], and }_1_131 (rwo) and 6,(0) are functions of k and tg [this is evident from (2.4} and
(2.9)]. Then one can write Eq. (3.8) for Q, in the form

Qo = fl(a)fz(kv, Lg)-

The eritical value k =k is determined by the condition
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dQ/dk = }1(o)dfylk, tg)/dk =0
or
(didk)y(k, tg) =0,

from which it is eVLdent that the critical value of the wave number kg does not depend on «, or more generally,
on the distribution a(T)

In conclusion of this investigation of the stability of a thin electric arc to symmetrical perturbations one
should note the following:

1) The stability boundary for as thin an electric arc as desired (the remaining parameters are fixed) is
determined by the value of the quantity QB8 2%c2e}/TR In €,; the critical value of this parameter is equal to —6.4,
and the critical value of the wave number tends to infinity;

2) in the case in which the wall temperature is comparable to or less than {In r,|™} the stability boundary
is determined by the value of the quantity Q€282 depending on the wall temperature, the critical value of this
quantity varies from 14 to «, and the critical wave number varies from —3.01 to «; and

3) upon variation of the electrical conductivity distribution as a function of the temperature it turns out
that the fullest distribution is the most stable (although more accurately, this dependence is nonmonotonic), and
the critical wavenumber does not depend on the electrical conductivity distribution.

All the calculations were performed on a computer, and the method of linearly independent solutions (for
example, see [4]) was used in the numerical calculations; the relative accuracy of the calculated curves is no

less than 1072,
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